+1(805) 568 7317

how do i add the text output from the console to the pyqtwindow the code below runs 4948254

How do I add the text output from the console to the PyQTwindow? The code below runs a heart disease predictor program and theresults are presented by a graph that is generated and shown in thePyQT window. However, we also need the interpretation of theresults to be displayed in the dialog box along with the graph.Please help. import sysfrom PyQt5.QtWidgets import QDialog, QApplication, QPushButton, QVBoxLayoutfrom numpy import genfromtxtimport numpy as npimport matplotlibmatplotlib.use(‘Agg’)import matplotlib.pyplot as pltfrom sklearn.svm import LinearSVCfrom sklearn.decomposition import PCAimport pylab as plfrom itertools import cyclefrom sklearn import cross_validationfrom sklearn.svm import SVCfrom matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvasfrom matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbarimport matplotlib.pyplot as pltimport randomclass Window(QDialog): def __init__(self, parent=None): super(Window, self).__init__(parent) # a figure instance to plot on self.figure = plt.figure() # this is the Canvas Widget that displays the `figure` # it takes the `figure` instance as a parameter to __init__ self.canvas = FigureCanvas(self.figure) # this is the Navigation widget # it takes the Canvas widget and a parent self.toolbar = NavigationToolbar(self.canvas, self) # Just some button connected to `plot` method self.button = QPushButton(‘Plot the data’) self.button.clicked.connect(self.my_model) # set the layout layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) layout.addWidget(self.button) self.setLayout(layout) #Method to plot the graph for reduced Dimesions def plot_2D(self,data, target, target_names,ax): colors = cycle(‘rgbcmykw’) target_ids = range(len(target_names)) for i, c, label in zip(target_ids, colors, target_names): ax.scatter(data[target == i, 0], data[target == i, 1], c=c, label=label) plt.legend() plt.savefig(‘Reduced_PCA_Graph’) def my_model(self): ”’ plot some random stuff ”’ #Loading and pruning the data dataset = genfromtxt(‘cleveland_data.csv’,dtype = float, delimiter=’,’) #print dataset X = dataset[:,0:12] #Feature Set y = dataset[:,13] #Label Set # Classifying the data using a Linear SVM and predicting the probability of disease belonging to a particular class modelSVM = LinearSVC(C=0.001) pca = PCA(n_components=5, whiten=True).fit(X) X_new = pca.transform(X) # calling plot_2D target_names = [‘0′,’1′,’2′,’3′,’4′] # create an axis ax = self.figure.add_subplot(111) # discards the old graph ax.clear() self.plot_2D(X_new, y, target_names,ax) # refresh canvas self.canvas.draw() #Applying cross validation on the training and test set for validating our Linear SVM Model X_train, X_test, y_train, y_test = cross_validation.train_test_split(X_new, y, test_size=0.4, train_size=0.6, random_state=0) modelSVM =, y_train) print(“Testing Linear SVC values using Split”) print(modelSVM.score(X_test, y_test)) # printing the Likelihood of disease belonging to a particular class # predicting the outcome count0 = 0 count1 = 0 count2 = 0 count3 = 0 count4 = 0 for i in modelSVM.predict(X_new): if i == 0: count0 = count0+1; elif i == 1: count1 = count1+1; elif i == 2: count2 = count2+1; elif i == 3: count3 = count3+1; elif modelSVM.predict(i) ==4: count4 = count4+1 total = count0+count1+count2+count3+count4 #Predicting the Likelihood #Applying the Principal Component Analysis on the data features modelSVM2 = SVC(C=0.001,kernel=’rbf’) #Applying cross validation on the training and test set for validating our Linear SVM Model X_train1, X_test1, y_train1, y_test1 = cross_validation.train_test_split(X_new, y, test_size=0.4, train_size=0.6, random_state=0) modelSVM2 =, y_train1) print(“Testing with RBF using split”) print(modelSVM2.score(X_test1, y_test1)) #Using Stratified K Fold skf = cross_validation.StratifiedKFold(y, n_folds=5) for train_index, test_index in skf: # print(“TRAIN:”, train_index, “TEST:”, test_index) X_train3, X_test3 = X[train_index], X[test_index] y_train3, y_test3 = y[train_index], y[test_index] modelSVM3 = SVC(C=0.001,kernel=’rbf’) modelSVM3 =, y_train3) print(“Testing using stratified with K folds”) print(modelSVM3.score(X_test3, y_test3))if __name__ == ‘__main__’: app = QApplication(sys.argv) main = Window() sys.exit(app.exec_()) Attached

"Order a similar paper and get 15% discount on your first order with us
Use the following coupon

Order Now